Acknowledgements—One of us (PAR) wishes to express his thanks to CSIR (India), for a Junior Research Fellowship and our thanks are also due to Prof. N. V. Subba Rao, Osmania University, Hyderabad, for NMR spectra.

REFERENCES

- Chopra, R. N., Nayar, S. L. and Chopra, I. C. (1956) Glossary of Indian Medicinal Plants, p. 70. Council of Scientific and Industrial Research, New Delhi.
- 2. Chopra, R. N., Badhwar, R. L. and Ghosh, S. (1965) Poi-

- sonous Plants of India, Vol. II, p. 774. Indian Council of Agricultural Research, New Delhi.
- 3. Govindachari, T. R., Sathe, S. S. Viswanathan, N., Pai B. R., and Srinivas, M. (1969) *Tetrahedron Letters* **25**, 2815.
- 4. ibid- (1967) Tetrahedron Letters 33, 3517.
- Lakshmi (Mrs.), T. G., Srimannarayana, G., and Subba Rao, N. V. (1970) Curr. Sci. 39, 395.
- 6. Maiti, P. C. and Das, A. K. (1965) Curr. Sci. 34, 179.
- Erich Heftmann (1961) Chromatography. p. 509. Reinhold, New York.
- 8. Meck, E. G. (1956) J. Chem. Soc. 219.
- Okigawa, M., Maeda, T. and Kawano, N. (1970) Tetrahedron 26, 4301.

Phytochemistry, 1975, Vol. 14, pp. 1876-1877. Pergamon Press. Printed in England.

PHYTOSTEROLS IN EUPHORBIACEAE AND RUTACEAE*

T. K. RAY, D. R. MISRA and H. N. KHASTGIR

Chemistry Department, North Bengal University, Darjeeling, India

(Received 19 March 1974)

Key Word Index—Fluggea microcarpa; Euphorbiaceae; hexacosane; friedelin; friedelanol; sitosterol; Sapium baccatum; Euphorbiaceae; acetoxy aleuritolic acid; Skimmia wallichii; Rutaceae; taraxerone; 3-epitaraxerol; taraxerol; sitosterol.

Plant. Fluggea microcarpa Blume [2,3]. (Syn Flueggea microcarpa Blume); Euphorbiaceae. Occurrence. Throughout India; from Kashmir ascending the Himalaya to 5000 ft, to Bhutan, and Assam and southwards to Malacca and Travancore. Uses. Medicinal [4]. Previous work [5]. Bergenin and isocoumarin in leaves.

Isolation and identification. The powdered trunk bark was extracted with C_6H_6 and the neutral fraction on chromatography over deactivated alumina afforded several crystalline solids: hexacosane, mp 58–59; friedelin, mp 259–261°, $[\alpha]$, -32°, v_{max} 1708 cm⁻¹ (six-membered ring ketone), oxime, mp 293–295°, $[\alpha]_D$ + 54·6°; friedelanol, mp 296–298°, $[\alpha]_D$ + 15·5°, acetate, mp 314–316°, and sitosterol, mp 136–137°, $[\alpha]_D$ – 34°, acetate, mp 127–129°, $[\alpha]_D$ – 39°. The identity of the above compounds was confirmed by mmp IR and co-TLC with authentic samples.

Plant. Sapium-baccatum Roxb; [6]. Euphorbiaceae. Occurrence. Assam, Sylhet and Khasia Mountains, India. Previous work. [7–10] Isolation

and characterization of taraxerone, taraxerol, sit-osterol 1-hexacosanol, 3-3'-di-O-methyl ellagic acid [11].

Isolation and identification. The acidic fraction from the C₆H₆ extract of the stem and trunk bark of the plant on esterification with CH₂N₂ followed by chromatography furnished a crystalline solid, mp 241–243°. $[\alpha]_D + 21.8^\circ$, no UV absorption above 220 nm, $v_{\text{max}}^{\text{CHCl}_3}$ 1738 cm⁻¹ (broad, –OCOMe and COOMe, 1245 cm⁻¹ (–OCOMe), NMR signals at δ 5.45 (1H, vinyl proton, trisubstituted double bond), δ 4.42 (1H,H–C–O–COMe), δ 2.05 (3H, -OCOMe), δ 3.54 (3H, -COOMe) and several sharp signals between δ 0.8 to 1.55 (21H, seven methyl groups). Hydrolysis of the ester with 5% methanolic KOH yielded an alcohol, mp 208- 210° , $[\alpha]_D + 15.6^{\circ}$, $^{\text{CHCI}_3}_{\text{max}}$ 3490 cm⁻¹ (-OH), 1738 cm⁻¹ (-COOMe). Oxidation of alcohol by CrO₃- C_6H_5N complex-furnished a ketone, mp 174– 176°, $[\alpha]_D + 14.2^\circ$, ν_{max}^{KBr} 1708 cm¹ (C=O), 1738 cm⁻¹ (-COOMe). The acid obtained from the plant is therefore acetoxy aleuritolic acid, the physical data on the ester, alcohol and ketone being strikingly similar to those obtained for the known compound [12].

^{*}Part 2 of a series on Plant Phytosterols; for Part 1 see Ref. [1].

Plant. Skimmia wallichii Hk [13]; Rutaceae. Occurrence. A small procumbent shrub about 4 ft. high, fairly common in Singalila Range, from 9000-11000 ft. Previous work. None. Isolation and identification. The powdered bark of the plant was extracted with C₆H₆ and the neutral fraction on chromatography over deactivated alumina first gave four crystalline compounds; the first mp $238-239^{\circ}$, $[\alpha]_D + 11^{\circ}$, v_{max} 1710 cm⁻¹ (six membered ring ketone) was identical with taraxerone (mmp and IR); 3-epitaraxerol [14] mp 261-263°, $[\alpha]_D - 25.6^\circ$, $v_{max} 3420 \text{ cm}^{-1}$ (-OH) and 825 cm¹ (trisubstituted double bond), acetate, mp 160- 162° , $[\alpha]_{\rm D} - 43$. Oxidation of the alcohol by CrO₃-C₆H₅N complex-furnished taraxerone. The alcohol, 3-epitaraxerol and its oxidised product, taraxerone were identified by mmp, IR and co-TLC; taraxerol, mp 272–274°, $[\alpha]_D$ +5.5°, acetate, mp 295–297°, $[\alpha]_D + 10^\circ$ confirmed by mmp, IR and co-TLC with an authentic sample; and sitosterol (mmp and IR).

Acknowledgement—T.K.R. thanks the East India Pharmaceutical Works Ltd., Calcutta for grant of a research fellowship.

REFERENCES

- Misra, D. R., Ray, T. K. and Khastgir, H. N. (1973) Phytochemistry 12, 1819.
- 2. Hooker, J. D. (1854) Flora of British India, Vol. 5, p. 328, Reeve, London.
- Cowan, A. M. and Cowan, J. M. (1929) The Trees of Northern Bengal, p. 116. Bengal Secretariat Book Depot, Calcutta.
- 4. Hay, J. E. and Haynes, L. J. (1958) J. Chem. Soc. 2231.
- Ahamed, S. A., Kapoor, S. K. and Zaman, A. (1972) Phytochemistry 11, 452.
- Hooker, J. D. (1854) Flora of British India, Vol. 5, p. 470. Reeve, London.
- Misra, D. R. and Khastgir, H. N. (1969) J. Ind. Chem. Soc. 46, 663.
- Misra, D. R. (1969) Ph.D. Thesis, p. 143 North Bengal University, India.
- Misra, D. R., Pradham, B. P. and Khastgir, H. N. (1969)
 J. Ind. Chem. Soc. 46, 845.
- Naskar, D. B. (1972) Ph.D. Thesis, p. 35. North Bengal University, India.
- 11. Row, L. R. and Raju, R. A. (1967) Tetrahedron 23, 879.
- Misra, D. R. and Khastgir, H. N. (1970) Tetrahedron 26, 3017
- Cowan, A. M. and Cowan, J. M. (1929) The Trees of Northern Bengal, p. 28. Bengal Secretariat Book Depot, Calcutta.
- Bose, S. N. and Khastgir, H. N. (1973) Indian J. Chem. 11, 827.

Phytochemistry, 1975, Vol. 14, pp. 1877-1878. Pergamon Press. Printed in England.

BREVIFOLIN, CORILAGIN AND OTHER PHENOLS FROM GERANIUM THUNBERGII

TAKUO OKUDA, TAKASHI YOSHIDA and KAZUKO MORI

Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan

(Received 14 February 1975)

Key Word Index-Geranium thunbergii; Geraniaceae; polyphenols; brevifolin; corilagin; ellagic acid.

Plant. Geranium thunbergii Sieb. et Zucc. Source. Collected at Okayama University, August 1973. Uses. Official antidiarrhoics in Japan. Previous work. Isolation of gallic acid, succinic acid, quercetin [1], kaempferol-7-rhamnoside and kaempferitrin [2].

Present work. The aqueous extract of the aerial parts of the plant was concentrated and the ppt which formed was recrystallized from C_6H_5N to yield ellagic acid (IR). The mother liquor was concentrated to a syrup which was extracted with MeOH. The MeOH soln, on concentration gave solid KCl, and the filtrate (A) was then continuously extracted with Et_2O . The Et_2O extract gave a solid, recrystallized from MeOH, to give brevifolin 1, $C_{12}H_{18}O_6$, (M⁺ 248), m.p. > 360°, trimethyl ether 2 (CH₂N₂), $C_{15}H_{24}O_6$, (M⁺ 290), mp 209–210°. These data together with UV, IR,